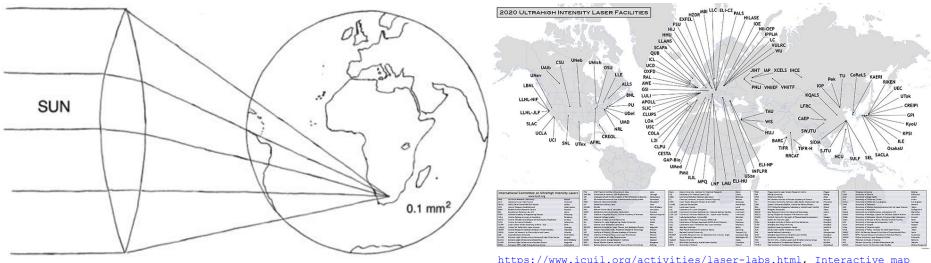


RESEARCH FOR GRAND CHALLENGES

HELPMI: the Helmholtz Laser-Plasma Metadata Initiative

Start developing a data standard for the global LPA community

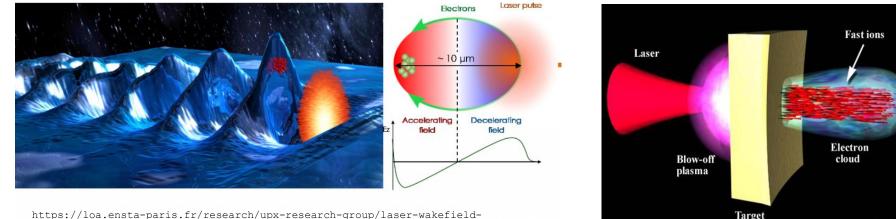

www.helmholtz.de

LPA Community

Lasers...

- Ultra-intense lasers can transform plasmas into particle-accelerating structures
 - Ultra-short (fs-ps), Joule-kJ laser facilties: high peak-power, ICUIL.org
 - Chirped pulse amplification (invented 1985, Nobel prize awarded 2018)

Schwoerer H. (2008). Particle acceleration with lasers. S. Afr. J. Sci. 104, 299-304.



LPA Community

... and plasma accelerators

- Ultra-intense lasers can transform plasmas into particle-accelerating structures
 - Electron acceleration and ion acceleration in high gradients
 - Inherent ultra-short time structure and thus high peak currents

https://loa.ensta-paris.fr/research/upx-research-group/laser-wakefield-acceleration-lwfa/

LPA Community

Science

- Ultra-intense lasers can transform plasmas into particle-accelerating structures
 - Accelerating structures are optically generated and transient
- Fundamental research focusing onto scalings, specific regimes and adequate control
 - Experimental studies in uncharted terrain: explorative, innovative
 - Numerical modelling (digital twin / complement) crucial for micro-physical understanding
 - Expensive simulations up to exascale computing, GPU-accelerated
 - Data-driven techniques are attractive due to complexity of LPA processes
- Applications
 - Small-scale accelerator substitute (Nuclear physics, Radiation physics, Medical research)
 - Secondary radiation sources (X-rays, g-rays, Neutrons, Free-electron lasers), fusion energy research

HELPMI: Main Goals

2-year project, 3 partner centers, 200k add. funding

Initiative: start the development of a data standard for LPA experiments

open

- Consulting and assistance from HMC community
- Concepts, tools, trends, best practices, lessons learned...
- Adopt NeXus standard from PaN experimental community
 - Use existing base classes, possibly define new ones
 - Propose application definition

- Currently established for simulations in LPA community
- Fileformat-agnostic

an umbrollo over a family of standards

Glossary: Domainspecific terms

Hindable Accessible

HELPMI: example data set

, → X

†₁

Display Inspect

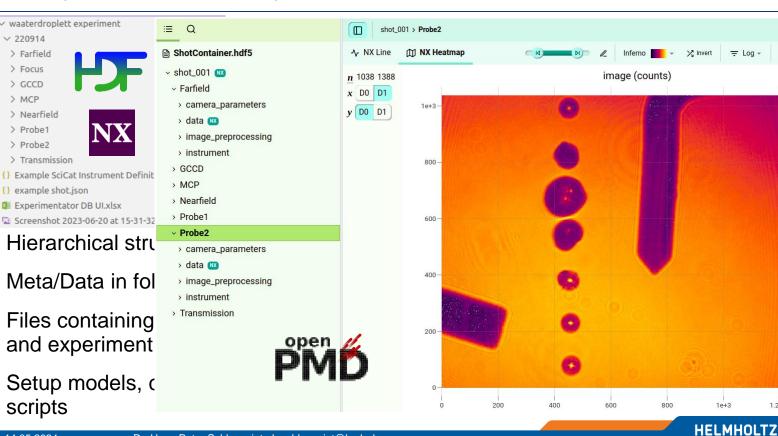
Ξ (?)

2.232e+3

2e+3

1e+3

- 200


- 100

- 20

10

- 2

Example data chunk to perform our trials

scripts

v waaterdroplett experiment

NX

> 220914

> Farfield

> Focus

> GCCD

> MCP

> Nearfield

> Probe1

> Probe2

> Transmission

{} example shot.json

Experimentator DB UI.xlsx

7

1e+0

1.2e+3

HELPMI: draft glossary

Devices-Detectors-Components-Library: https://doi.org/10.5281/zenodo.11143947

		Template	2
	HELPMI Common Phrases/Categories	Feedback	3
		Detectors	3
1. Techr	nical Metadata	Standard CCD/CMOS	3
a.	Manufacturer or in-house design	Focus Diagnostic	4
	Model name/number	Wavefront Sensor	
C.	Serial number	Gateable CCD	
d.	Operating software and version number, dependencies (Win, Linux?, .NET?)	Streak Canera	
	Calibration data (Manufacturer)	Spectrometer – Photon	
c. f	Last calibration date	Spectrometer - Electron	
1.	Pixel count in horizontal direction	Spectrometer – Proton/Ion	
g.		Thomson Parabola Spectrometer	
n.	Pixel count in vertical direction	Wizzler	
1.	Pixel size and/or pitch	Dazzler	
j.	Noise measurement	SRIDER.	
	Technical drawing/file of device/setup	FROG	
2. Procedural Metadata		2 [™] Order <u>Autocorrelator</u>	
	Name of detector/device as used in experiment	2 [™] Order Autocorrelator for Measurement of Pulse Front Tilt, e.g., TiPa from Light Conversion	12
b.	Location of detector/device as used in experiment	3ª Order Autocorrelator (Sequoja, Tundra) Scintillator Screen (electron pointing diagnostic)	
c.	Schematic of detector's/device's setup		
d.	Schematic of imaging/focusing setup	Temperature Sensor	
	i. Lens, objectives, filters, etc.	Humidity Sensor.	
	ii. Imaging distances	Photodiode	
e.	Custom calibration, Point Spread Function (PSF), Flatfield, Gainmap (links to data)	Quadrant Detector	
f.	Exposure, Shutter mode (rolling/global)	Vacuum Sensor	
g.	Gain	Devices	
h.	Binning	– Linear Motor Stage (stepper, piezo, etc.)	
i.	Trigger and Timing (Delay)	Rotation Stage	
3 Secur	ity/Access Metadata	Mechanical Shutter (only template)	
4. Data		Electro-Optical Shutter (only template)	17
a	Input/output energy	Spatial Filter	17
ц. Ь	Input/output polarization	Spectral Filter (only template)	
υ.	Input/output FWHM beam diameter	Amplitude Filter (only template)	18
		Polarizer Filter	
a.	Input/output spectrum	Beam Splitter (only template).	
e.	Input/output spectral FWHM	Generic Optic (only template)	
t.	Input/output central wavelength	Jargets	19
g.	2D array of pixel values		

Partners and related projects

- openPMD: open Particle Mesh Data, open standard for PIC (and more)
- <u>NeXus</u>: system of standards from synchrotron and neutron facilities
- LASY.org: package for (standardized) laser pulse modelling in PIC simulations, can take measured data and uses openPMD format → add HELPMI terms
- plasma-MDS: simple schema, partly applicable to LPA, but completely new applications
- NEILS (network of extremely intense laser systems)
- ELI (European research infrastructure)
- THRILL (EU project on high-repetition rate lasers)

plasma-MDS @ LPA Possible translation

Source = Device which creates the plasma by ionizing the medium:

Laser system/facility with all parameters

Medium = Substance being ionized or activated by source:
 Target

Target = Substrate on which plasma acts

often none

Diagnostics

Diagnostics of Source(Laser)

Diagnostics of Medium(Target)

Diagnostics of Plasma at all

14.05.2024

Acknowledgements

- Contact us: <u>helpmi@hzdr.de</u>
- Contribute: Workshop @ GSLNov 13/14 elm GSI: Johannes Hornung, Udo Eisenbarth,
 - <u>https://indico.gsi.de/e/helpmi-workshop-2023</u>
 - Fall 2024: stay tuned
- Some slides were inspired by
 - S. Brockhauser @ FAIRmat Tutorial #6 on Metadata standarisation
 - B. Watts @ <u>HDF5 and Nexus</u>

Who is HELPMI?

- GSI: Johannes Hornung, Udo Eisenbarth Vincent Bagnoud
 - HI Jena: Alexander Kessler, Matthew Schwab, Marco Hornung, Malte Kaluza
 - HZDR: Franz Pöschel, Michael Bussmann, Alexander Debus, Hans-Peter Schlenvoigt
 - Project Observers: Axel Huebl, Andreas
 Doepp, Rajeev Pattathil, Birgit Plötzeneder, Lajos Schrettner, Balázs Bagó
- This project (ZT-I-PF-3-066) was funded by the Initiative and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Metadata Collaboration project call.